玩弄朋友娇妻呻吟交换电影,久久久精品国产SM调教网站,情欲少妇人妻100篇,99精品国产成人一区二区

歡迎訪問納米防水網官方網站!

行業新聞
News

Nano Res.│武漢理工大學謝毅教授:具有梯度和多級結構的高耐候超雙疏防污閃涂層材料

WaterOff
2022-09-04 13:05:38

背景介紹

 

室溫硫化硅橡膠(RTV)已被廣泛應用于高壓絕緣子防污閃,然而RTV表面的疏水特性易遭受破壞,當RTV表面上形成水滴,會導致氣-液-固邊界處的電場增強,電暈放電導致疏水性降低。疏水性的減弱會降低絕緣表面抑制漏電流和局部放電的能力,從而容易發生閃絡事故。近年來,超疏水(SH)材料被認為是傳統RTV的一種最有前途的替代材料,可有效提高絕緣子的防污閃性能。在絕緣子表面涂覆超疏水材料,由于其具有超強的拒水能力,可有效防止水粘附在器件表面,賦予絕緣子表面較大的漏電距離,抑制泄露電流,降低閃絡的可能性。然而考慮到材料在實際使用過程中,自然界存在的一些污穢物如鳥糞等含有有機污染物。這些有機物容易附著在超疏水絕緣子表面,從而導致可溶性鹽類和水的集聚,削弱其污閃性能。

鑒于此,武漢理工大學與倫敦大學學院、華中科技大學等合作,提出了一種具有獨特梯度結構的耐久性超疏水超疏油(超雙疏)涂層的制備方法并應用于電力設備防污閃領域,由于其優異的拒水拒油性能,在實際使用過程中涂層不會受到自然界中有機污穢物的影響,從而有效提高了高壓輸電線路絕緣子的防污閃性能。

 

研究方法

 

本研究超雙疏材料的制備采用噴涂“底漆+面漆”的工藝,通過控制噴涂壓力、噴涂距離等獲得具有獨特梯度結構的超雙疏(SAP)涂層。材料的表面形貌、微觀結構、表面結構、化學成分等采用SEM、TEM、EDS、FTIR等進行測試分析。采用砂紙打磨的方法測試材料的耐磨性,采用紫外光照、酸堿液浸泡、低溫冷凍及高溫退火等方法對材料的耐紫外穩定性、耐化學穩定性及耐高溫低溫穩定性。各種涂層絕緣子(如超疏水、超雙疏及RTV 涂層玻璃絕緣子)的污閃試驗是在人工污閃試驗臺上進行,在施加電壓之前,絕緣子表面采用人工污穢物(硅藻土和NaCl的混合物)進行污染,并在加濕器的霧室中完全暴露于飽和水蒸汽中15分鐘后取出置于污閃試驗臺進行試驗;通過逐漸升壓直到發生閃絡,并記錄閃絡電壓值。

 

 

成果簡介

 

(1)發展了一種具有獨特梯度結構的超雙疏材料設計及其構筑方法,該梯度結構的構筑有效提高了超雙疏涂層材料的耐磨性能。

(2)提出了一種新的污閃性能評估模型,該模型考慮了有機物污染對設備防污閃性能的影響,并通過絕緣子污閃試驗進行了驗證。研究表明,當超疏水絕緣子表面被有機物污染后,其污閃電壓降低,即防污閃性能下降。而超雙疏絕緣子在相同條件下污閃性能基本不受影響。

(3)發展了一種采用超雙疏涂層材料提高輸電線路用絕緣子的污閃性能的方法,其防污閃性能遠優于傳統RTV。在輕度和重度污染等級下,創制的超雙疏絕緣子的污閃電壓比傳統RTV絕緣子在相同條件下分別提高了29.0% 和42.9%。

 

圖文導讀

 

Figure 1 (a) SEM images of the primer showing mastoid morphologies of the surface. (b) and (c) SEM images of the SH coating displaying hierarchical micro-nanostructure of the surface. (d) The surface superhydrophobicity of SH coating enables the spherical water droplets (dyed with methyl blue) resident on top, while oil drops completely spread on the surface. (e) and (f) SEM images of the SAP coating surface showing hierarchical micro-nanostructure. (g) and (h) The superoleophobicity and superhydrophobicity of the SAP coating enable the spherical dyed water droplets and organic droplets (e.g., bean oil, hexadecane, and castor oil) resident on top. Insets in panels ((a), (c), and (f)) provide the high-magnification SEM images of the corresponding surface. Insets in panels ((d) and (g)) provide the optical images of the resident water droplets on the corresponding coating when measuring WCA. Inset in panel (h) reports the optical image of the hexadecane droplets on the corresponding coating when measuring OCA. (i) Water droplet (5 μL in volume) pinning and re-bouncing behaviour when released from a height of 2.5 mm toward the SAP surface. (j) Dropping dyed water on the fly-ash-contaminated SAP coating to display the self-cleaning performance of the SAP surface.

圖1展示了底漆、超疏水(SH)涂層及超雙疏(SAP)涂層的表面形貌及表面潤濕性能。圖1(a-c)中可以看出,制備的純底漆和“底漆+面漆”超雙疏涂層表面具有明顯的乳突結構。圖1(d)表明,純超疏水涂層表面水滴(甲基藍染色)呈球形,而油滴完全浸潤表面。圖1(g-h)為SAP涂層,由于其優異的疏水疏油性能,水和油滴在表面均為球形。圖1(i)展示了水滴在超雙疏表面的彈跳行為,圖1(j)展示了超雙疏涂層表面優異的自清潔效果。

 

Figure 2 (a) The scheme illustrating the sandpaper abrasion test. (b) and (c) Evolution of WCA and WRA (b), and OCA and OSA (c) on the SAP coatings over sandpaper abrasion cycles. The oil for OCA and OSA tests is pump oil. (d)–(g) SEM images of SAP coatings after sandpaper abrasion test for 200 cycles ((d) and (e)), and 700 cycles ((f) and (g)), respectively. (h) The mechanism on persistence of superamphiphobicity upon sandpaper abrasion.

圖2展示了超雙疏涂層材料的耐磨性能結果及耐磨機制。從圖可以看出,超疏水涂層經過500次的砂紙循環打磨后仍然保持良好的超雙疏效果。由于涂層獨特的梯度結構及乳突狀微納結構,砂紙打磨后部分乳突頂部受損,但暴露出來區域因為仍然具有一定數量的超雙疏SiO2納米顆粒,使得整個表面仍保持超雙疏性能,即涂層優異的耐磨性可歸結于構造的獨特的梯度結構以及分級的微納米結構。

 

Figure 3   Chemical stability ((a)–(d)), UV irradiation stability ((e) and (f)), and thermal stability ((g)–(j)) of the SAP coating. (a) and (b) The evolution of WCA, and WRA (a) and OCA, and OSA (b) of the coated SAP glass slides after having been soaked in solutions of different pH values for 168 h. (c) and (d) Digital photographs displaying that both water and pump oil droplets preserve sphere-like shape on the coatings collected after submersion in extreme corrosion solutions (e.g., pH = 1 and pH = 14 solutions, respectively) for 168 h. (e) and (f) The evolution of WCA, and WRA (e) and OCA, and OSA (f) of the coated SAP glass slides over UV irradiation time. Inset in panel (f) shows the digital photograph of the coating together with water and pump oil droplets after 288 h of UV irradiation. (g) and (h) WCA, and WRA (g) and OCA, and OSA (h) of SAP coating treated at different temperatures for 2 h. (i) and (j) SEM images of the SAP coatings treated at 200 and 350 °C, respectively, for 2 h.

圖3展現了超雙疏涂層良好的耐紫外、耐溫變及耐化學腐蝕性能。超雙疏涂層分別在−20 ℃至350 ℃的極端溫度下的熱處理2 h、288小時連續紫外線輻照、極端腐蝕溶液(pH為1.0和14.0之間的值)中持續浸泡336小時,仍然能夠保持良好的超雙疏效果。

 

Figure 4 (a) Experimental measurement curves of leakage current and DC voltage of the various coatings under light pollution environment. Inset provides the enlarge view of the curve regarding SAP and SH coatings. (b) Experimental measurement curves of leakage current and DC voltage of the SAP coating under three levels, namely heavy, medium, and light contamination. (c) The column chart of leakage currents of various specimens as dictated under 10 kV of DC voltage and heavy, medium, and light pollution environment, respectively. (d)–(f) Digital photographs of SAP (d), SH (e), and RTV (f) coatings after contamination by diatomite powders and wetting in the fog chamber.

圖4為裸玻璃、超疏水鍍膜玻璃及超雙疏鍍膜玻璃的泄漏電流測試實驗,結果表明超雙疏涂層具有良好的抑制泄露電流的性能。圖4(a)中表明SAP和SH樣品的泄露電流隨著直流電壓升高變化較小,而RTV和疏水樣品的泄露電流隨著電壓的升高而激增。圖4(b)表明污染等級越高,污閃電壓越高。而圖4(d-f)不同樣品的數碼照片表明,由于SAP涂層具有良好的超疏水性,水滴以球形駐留在表面,而RTV涂層表面水滴會形成連續水膜,這也是SAP樣品具有較低泄露電流的原因。
 

Figure 5 (a) Scheme illustrating the evaluation proposal for pollution flashover upon organic contamination. (b) and (c) The digital photographs of the SH coatings after contamination by different drops of hexadecane and exposing to saturated moisture environment. (d) Experimental measurement curves of leakage current and DC voltage of the SH coating after contamination by hexadecane droplets and diatomite powder.
圖5展示了超疏水涂層表面閃絡模型及機理示意圖,以及超疏水涂層表面在有機物污染后的污閃性能測試結果。圖5(d)中可以明顯的發現,被十六烷液滴污染的超疏水涂層泄露電流在較低的電壓情況下便發生激增,并且隨著污染面積的增加,超疏水涂層的防污閃性能隨之下降。而SAP涂層由于良好的疏油效果,其表面的潤濕行為不會受到十六烷液滴的影響,因此泄露電流基本保持不變。
 

Figure 6 (a) The PFOVs of various insulators (SAP, SH, H-O, and RTV represent coated SAP, SH, hydrophobic-oleophobic, and RTV-coated glass insulators, respectively). (b) PFOVs of the SAP and RTV glass insulators under light, medium, and heavy pollution grade, respectively. (c) PFOVs of the representative oil-contaminated insulators (i.e., hexadecane droplets). (d)–(f) Digital photographs of the corresponding insulators after contamination by mixture of diatomite and NaCl, followed by exposing to saturated moisture environment. (g) Digital photograph of SH glass insulator contaminated by both simulated contaminants (i.e., mixture of diatomite and NaCl) and oil (i.e., hexadecane drops), followed by exposing to saturated moisture environment for 15 min. (h)–(k) Digital photographs of the various corresponding insulators after pollution flashover tests.
圖6為不同種類絕緣子的污閃電壓測試結果。圖6(a)表明,相較于其他絕緣子,在相同條件下超雙疏絕緣子的污閃電壓最高。圖6(c)表明隨著油污染面積的提高,超疏水絕緣子的污閃電壓也隨之下降。上述結果表明超雙疏絕緣子因為具有優異的拒水拒油效果,在電力設備防污閃應用中比超疏水和傳統RTV絕緣子具有更遠大的前景。
 

 

作者簡介

 

武漢理工大學謝毅教授團隊長期從事能源與環境功能納米材料領域的研究工作,主要致力于半導體納米晶和納米結構合成及其化學轉換、材料表界面修飾及功能薄膜材料(如超浸潤薄膜)制備、基于表面等離子體共振的光熱轉換材料(金屬硫族化合物、MXene等)制備及其上述材料在新能源、發光、光催化、自清潔、電力防污閃、防冰除冰、海水淡化等領域的應用研究,并取得了一系列標志性成果。研究成果發表于J. Am. Chem. Soc., ACS Nano, Chem. Mater., Nano Res., ACS Appl. Mater. Interfaces, Nanoscale, J. Colloid. Interf. Sci.等國內外重要學術刊物上。

返回列表
主站蜘蛛池模板: 聊城市| 八宿县| 搜索| 桦南县| 洱源县| 克山县| 洛阳市| 富顺县| 湄潭县| 介休市| 秦皇岛市| 武定县| 崇信县| 赤城县| 青州市| 汝城县| 高平市| 塘沽区| 河北区| 彭州市| 大英县| 徐州市| 平顺县| 渝北区| 沂南县| 铜山县| 牟定县| 洮南市| 图片| 会泽县| 蒙山县| 磐安县| 中超| 牟定县| 石台县| 刚察县| 石渠县| 互助| 彭山县| 神池县| 凤阳县|